
N91-20684

A Failure Management Prototype: DR/Rx

David G. Hammen

Carolyn G. Baker
Christine M. Kelly

Christopher A. Marsh

The MITRE Corporation
1120 NASA Road One

Houston, Texas 77058

Abstract

This failure management prototype performs failure diagnosis and recovery management of
hierarchical, distributed systems. The prototype, which evolved from a series of previous
prototypes following a spiral model for development, focuses on two functions: the Diagnostic
Reasoner (DR) performs integrated failure diagnosis in distributed systems, and the Recovery
Expert (Rx) develops plans to recover from the failure. This paper discusses issues related to
expert system prototype design, discusses the previous history of this prototype, and describes the
architecture of the current prototype in terms of the knowledge representation and functionality of
its components.

Introduction

Space Station Freedom has been defined to have a
hierarchical, distributed control architecture. The
highest level in the architecture, Tier I, has knowledge
of each of the systems in Freedom (for example, the
Communications and Tracking System (C&TS) and
the Thermal Control System (TCS)). The Operations
Management System (OMS), composed of both
automated functions and manual operations, represents
Tier I in the command architecture. The second level,

Tier II, represents a lower level in the command
hierarchy, having a limited scope of knowledge (for
example, the System Management function for the
Electrical Power System, which has little or no
knowledge of the other systems). Tier II managers'
functions are further delegated to Tier m managers.
The data become more abstract and qualitative as they
advance upward through the control hierarchy.

This paper describes a prototype* that is being
designed to perform failure management at the Tier I
(OMS) level. Failure management includes diagnosing
the failure, determining the corrective actions to take,

* The research on and developmentof this prototype was jointly
sponsored by the National Aeronautics and Space
Administration, Johnson Space Center, under contract NAS9-
18057, and by The MITRE Corporation under its MITRE
Sponsored Research Program.

and then taking the actions and tracking the progress of
the recovery. The first phase of the project
implements the first two of these three functions: the
Diagnostic Reasoner (DR) performs diagnosis and the
Recovery Expert (Rx) establishes a Course of Action
to take to effect recovery.

This paper discusses issues related to expert system
prototype design, discusses the previous history of the
current prototype, and describes the architecture of
this prototype in terms of the knowledge
representation and functionality of its components.

Related Works

Our current effort expands on previous work done by
others and by ourselves. Our current prototype
expands on our previous efforts (Marsh, 1988; Marsh,
1989) by greatly increasing the use of behavior
representation, by addressing the impacts that result
from a failure, and by developing plans to recover
from a failure. The Diagnostic Reasoner incorporates
research from model-based reasoning, focusing on the
works of Davis (Davis, 1985), de Kleer and Williams
(de Kleer, 1987), Geffner and Pearl (Geffner, 1987),
and Holtzblatt, Marcotte and Piazza (Holtzblatt, 1989).
The Recovery Expert incorporates research from
planning, focusing on the goal-directed planning
developments by Wilkins (Wilkins, 1988) and the

347

Procedural Reasoning System described by Georgeff
and Ingrand (Georgeff, 1989).

Design Methodology

Design techniques used to build knowledge-based
expert systems are quite different from those used to
develop conventional software systems. Conventional
software systems are developed using principles of
modem software engineering, while expert systems
development follows knowledge engineering
disciplines.

Software systems developed using the waterfall model
follow well-defined design methodologies and
techniques and procedures that support them. This
allows the project manager to control the software
development process; the developer is provided a
foundation for building high-quality software in a
productive manner (Pressman 1987). NASA has
baselined the use of the waterfall model for the

development of software for the Space Station
Freedom Program (NASA 1989).

A pitfall to avoid when following this method is its
over emphasis on fully-elaborated documents in the
early design phase at the expense of attention to
functionality and meeting the user needs. The
waterfall model is appropriate where budget and
schedule are the primary concerns, but is ill-suited
when good user interfaces and decision support aids
functions are required (Boehm, 1988).

In developing a knowledge-based expert system, the
phases of the development process are interleaved.
The capabilities of the product evolve as a function of
operating experience. This technique is well suited to
knowledge-based applications where the concepts are
not well known at the start of the project. This
promises a rapid initial operating capability from
which the product can evolve (Boehm, 1988). The key
tasks for the developer are to gather domain
knowledge from an expert, build a portion of the
system, and then work with the expert to refine the
product (Waterman, 1986).

A pitfall to avoid when using the iterative methodology
is a tendency to incorporate additional capabilities that
exceed the initial design assumptions and constraints;
the resulting product is no longer an integrated piece
of software but a large and unruly collection of

routines and constructs. At this point, the design
should be re-assessed and the system re-implemented
to improve the conceptualization of the existing

knowledge, if the system is to continue to grow in
depth and breadth (Hayes-Roth, 1983).

The spiral model proposed by Boehm (Boehm, 1988)
describes a development spiral in which concepts are
discovered, implemented as prototypes and evaluated.
The prototypes are discarded, but the valid concepts
are retained and re-implemented in a more refined
product. The spiral model provides for product life-
cycle evolution and growth and focuses on identifying
and resolving risk items.

History

The past history for the evolution of the OMS
prototype has largely followed the spiral model, with
ideas being re-implemented as operating concepts have
matured. This paper describes the current phase in the
prototype life cycle in which new ideas are being
added, and some previous work is being re-
implemented to reflect a closer-to-operations
environment.

The first prototypes, implemented in a Lisp
environment, demonstrated the use of inferencing in
failure diagnosis and the use of automation in activity
execution and monitoring. Eventually, the first
prototypes were integrated on a test bed with
simulation of Space Station Freedom systems (Marsh,
1988).

Once the test bed environment matured, it was

necessary to refine on the capabilities of the first
prototypes and re-implement them based on test bed
operational constraints. A combination of C and Ada
were used for this phase of implementation (Marsh,
1989; Kelly, 1989).

This paper describes the next step in the prototype
evolution. An additional capability (Rx, to plan for
recovery) is being added and integrated with DR, the
failure diagnosis component. DR, a re-implementation
of failure diagnosis, contains earlier diagnostic
capabilities, but expands on the use of models, both to
support diagnosis and to assist in the planning for
recovery. Eventually, these two components will be
integrated with the execution of the activities identified
to effect recovery.

OMS Prototype Design

The OMS failure management prototype will be
implemented in Ada (the language mandated for the
Space Station Freedom Program) and ART/Ada (an

348

expert system shell) on a VAX Station 3100
workstation under the VMS operating system.

We will continue using the spiral development
methodology for this effort. Some iteration is
required for the development of our knowledge and
model bases as Freedom's design is subject to change.
Iteration is also required for the development of our
application software as the exact techniques to use or
avoid are not yet well-known. The spiral methodology
embodies this need for iteration.

The spiral method can support the complexity of the
OMS design and provides the rigor necessitated by
early definition of Ada specifications and interfaces
and Ada's emphasis on strong typing. Compared to the
very large projects developed using the waterfall
model, the OMS prototype and development team are
quite small; the extensive project management,
configuration management, and documentation
required by software engineering are not necessary for
our small prototyping effort.

The design of two of the prototype's functions, the DR
and Rx, has been recently completed. DR determines

likely failure sources and their potential impacts and
Rx develops plans to recover from these failures. An
overview of the information flow through DR and Rx
processes is presented in figure 1. This figure
introduces a hypothetical scenario that relies in part on
interactions between a C&TS frame multiplexer and a
TCS cold plate; this scenario will be used to illustrate
the design. Discussions of the design of these two
functions follow.

DR Architecture

The DR is responsible for determining the likely
source(s) of a failure and synthesizing dynamic
summary failure reports from the Tier II systems.
The DR's diagnosis could confirm or correct system-
level diagnoses.

Updating the Component Model

The Tier II managers notify the DR of changes in the
status of system components and changes in the
relationships between those components through
System Reports. Only significant qualitative changes

Figure 1 Overview of DR/Rx Process Flow

349

(for example, a cold plate's temperature changing
from "nominal" to "hot") are reported by the systems
to DR; minor quantitative deviations (for example, the
cold plate's temperature changing from 70 to 72
degrees) are not. DR uses the information in the
System Reports to update a schematic-like model of the
Space Station Freedom's systems.

The component model incorporates configuration,
status and behavior information. The configuration
information identifies a component's relationships
with other components, both physically and
functionally. The status information identifies mode
of operation, equipment health, and key operational
measures that are related to behavior. The behavior
information identifies the causes and effects of

particular conditions with respect to a particular
component's health and mode of operation. The
behavior information describes both internal causal

consequences and behaviors across configuration
boundaries.

The description of a specific component is based on the
generic description of a class of related components;
the class descriptions in turn could be defined as a
hierarchy of descriptions. The description of a class of
components includes descriptions of behavior causes
and effects and attribute definitions of behavior

measure and configuration elements. The description
of a specific component includes information about the
component's behavior measures, operating conditions,

and configuration. A portion of the Component Model
is depicted in figure 2.

Generating a Suspect List

When the System Reports indicate a problem (as
opposed to a nominal change in configuration), DR
determines suspected causes based on reported
behavior and modeled behavioral cause-and-effect.
This information is collected into a Suspect List. DR
verifies that the expected behavioral effects have
occurred with respect to the possible suspects and their
related components.

A Suspect List identifies those suspects that will result
in a particular set of observed behaviors. More than

one cause could result in same observable behaviors, in
which case DR will identify each possible cause as a
possible suspect in the same Suspect List. A set of
observable behaviors could result from multiple
component failures, in which case DR will identify the
failure group as a possible cause. A Suspect List also
could identify key unknown behavior measures: the

assessment of some behavior measures will require
special resources or will induce inter-system
interactions. When DR encounters one of these

unknown measures along one of its diagnostic causal
pathways it will post the measure in the Suspect List as
a key unknown behavior measure whose assessment
should help refine the diagnosis.

3 months

Cold Plate

High Data Rate
Frame MUX 2

a kind of

instance

outgoing temperature I _ools
behavior I co-located entities

high

I
_ caused by

• internal fault

contains contains

Node I Aft Rack I

location l_
location

contains

Cold Plate 15
_v

I
"aa"l
value_ Vvalue

degraded low

_ effects

• health -> degraded; time frame: now

location

• flow rate low

_ outgoing temperature
value

high

• cooled entity's temperature -> high; time frame: minutes

Figure 2 Component Model

350

Managing Suspect Lists

The Tier II managers do not observe all of the effects
of a failure at one time. Consequently, DR will
generate Suspect Lists without complete knowledge of
the problem. When DR receives the first System
Report, DR responds given the available information.
As additional information becomes available, DR

relies on the expected behavioral effects or explained
behaviors of identified suspects that are described in
the component model to merge Suspect Lists generated
as the result of the same failure.

Assessing Impacts

The suspected components that produce the most
immediate and most critical impacts should be
considered before those suspects which have less
severe consequences. To assess the impact of a
particular suspect, DR uses an Impact Model that

augments the Component Model. The Impact Model
focuses on cascading operational causes and effects and
looks further ahead in time than does the Component
Model. To help assess the significance of an impact,
the Impact Model heuristically assigns numerical
severity values to an impact. A severity value and
temporal factor are attached to each node in the
derived, suspect-specific Impact Sequence. A sample

impact sequence is presented in figure 3.

Rx Architecture

The Rx is responsible for determining and
recommending a set of procedures, based on the
available crew procedures, that will result in recovery
from the problem. This set of procedures could
include intermediate actions that mitigate the more
acute consequences of the problem, providing adequate
time to realize the recovery itself.

Equipment Malfunction

Past (ATCS - Cold Plate 15 - De_lraded - Node 1, C&T Rack)

Impaired Operations

(ATCS - Cooling,Node 1, C&T Rack - Degraded)

Reduced Resource Supply

(ATCS - Cooling,Node 1, C&T Rack)

Resource Overutilization
(ATCS - Cooling,Node 1, C&T Rack)

Equipment Overheatin Fluid Overheating
(DMS - SDP 10 - Node 1, C&T Rack) (ATCS - Loop 5 Water - Node 1)

I Equipment Overheating (observed)

/ (C&T- HDR FM 2 - Node 1, C&T Rack) I
| _Operations I

/ (C&T - Space-to-Ground Comm) I

:.ou;.............................. 1- •
j I Equipment Malfunction

J _ _ (ATCS - Pump 23 - Node 1)
| / Lost Capability r

I / (ATCS - Cooling- Node 1)_.
| _ _ Global Overheating

....::.:.No.u!. / J (Node 1)
..........................!:!:;:i!:!:!:!::!:i:_i_:i:_:i;:i:;:_;i_:i::.:|_:i:............ / Loss of Module/Node

~ Day _,!*_:!ii_:_:i:!::_*_i_i_:!:!:_:i:i:_:iiii:_t........
Equipment Malfunction / __:_:_:_:_:_:_:_:_: ::_::...........

(DMS - SDP 10 - Node 1, C&T Rack) _;:;:!:_:_:!:i_:;:;:_:;:_:_:;:_:_:_:_:_:_:_:_:_:_:_:_.........................

Equipment Malfunction
(C&T - HDR FM 2 - Node 1, C&T Rack)

Figure 3 Impact Sequence

351

Selecting an Attack

Several options are available for dispositioning the
diagnosis reported by DR. Some failures are
accurately identified by DR; in these cases, the
problem can be addressed directly. Other failures are
not easily identified; additional information is needed,
such as information provided by an inter-system
diagnostic test procedure or a behavior measure value
that is unknown but whose assessment involves inter-
system interactions (and therefore the value cannot be
determined without Tier I approval). Rx is also
concerned with assuring that the actions taken are
sensible in light of the foreseeable impacts. When
severe or acute downstream impacts could occur, Rx
will develop plans that mitigate these downstream

impacts so that the desired action can be sensibly
performed. It might be imprudent for Rx to initiate

any action when a preliminary Suspect List is reported
by DR: Rx might do nothing until DR has observed
some predicted near-term downstream impacts.
Finally, Rx will request operator intervention if it
cannot find an adequate response.

Generating Goals

Rx develops goals that address the failure in concert

with the chosen attack. For example, repair goals
directly address failures, impact mitigation goals
address downstream impacts, data collection goals
address unknown behavior measures, and diagnostic
goals address unclear diagnoses. These goals will
drive the generation of a plan to solve a specific part of
the overall problem.

Rx applies generic goals that address the selected attack
to the specific problem, forming a specific goal that
addresses the specific problem and the selected attack.

For example, Rx could address a reduction in cooling
capacity as a special case of a resource supply
reduction. The generic goal of reducing resource
consumption addresses this generalized problem.
Applying this generic goal is applied to the specific
problem results in the specific goal of reducing the
cooling load. Sample goal generation data for impact
mitigation are presented in table 1.

Building Courses of Action

A Course of Action specifies a set of procedures that
collectively achieve a specific goal. The procedures
are selected from the pre-defined set of flight
procedures. Procedure metadata describes reasons
for, outcomes of and constraints against the use of
procedures. Rx uses this procedure metadata to build a

Course of Action that achieves the specific goals within
the constraints imposed by the failure and its impacts.
The Course of Action specifies the names of
procedures and the temporal relationships between
them: the procedures, when executed, should achieve
the specific goal that the Course of Action addresses.

Managing Courses of Action

Rx can build multiple Courses of Action in response to
a single problem. For example, the desired action
should be achieved by a repair Course of Action, but
several impact mitigation Courses of Action will be
required for this desired action to have a successful
outcome. These multiple Courses of Action must be
merged and ordered to form a unified Course of
Action that addresses the entire problem rather than a
portion of the problem. The attempt is to build
Courses of Action that solve the root problem within
the constraints levied by the failure. Sample Courses
of Action are presented in table 2.

Rx can also develop alternate means of addressing the
problem. These alternate Courses of Action must be
evaluated prior to execution. These final steps, as well
as all other steps in the process, require crew
interaction and approval.

Conclusions

The design of the DR and Rx has been recently
completed. This design was achieved by using
software engineering and knowledge engineering
techniques. These techniques can be merged under the
spiral model for a more integrated and long-lived
system. This design incorporates some concepts from
the predecessor prototyping activities but also
introduces some new ideas.

Future Plans

A Procedures Interpreter was a previous product of
the evolution of this prototype. This will be folded
into our current work to execute the recommended
Course of Action and to ensure that this Course of

Action is achieving the desired goals. The current
prototype is a stand-alone product and will be
integrated into the test bed environment to demonstrate
the effectiveness and an integrated failure management
system.

352

Impact

Impaired Operations

Reduced Resource Supply

Resource Ovemtilization

Table 1

Goal Generation Information for Impact Mitigation

Workarounds

Use Backup Capability

Augment Resource Supply

Augment Resource Supply
or Decrease Resource Utilization

Goal Generation Information

Backup Capability Mode On
and Failed Equipment Mode Off

Resource Level Nominal

Resource Level Nominal
Resource Consumption <= Resource Level

Goal

Repair Cold Plate

Reduce Cold Plate

Reduce Cold Plate Load
and Repair Cold Plate

Table 2

Courses of Action

Course of Action

Repair Cold Plate 15

Cross-Strap Frame Multiplexer 2

Cross-Strap Frame Multiplexer 2
and Repair Cold Plate 15

Comments

Severe impacts occur before completion

Does not attack root problem

Timely and effective

References

Boehm, Barry W. (May 1988) A Spiral Model of

Software Development and Enhancement. IEEE
Computer, Volume 21, Number 5, pp 61-72.

Davis, Randall (1985), Diagnostic Reasoning Based on
Structure and Behavior, Qualitative Reasoning About

Physical Systems, Daniel G. Bobrow, ed, Cambridge,

Massachusetts: The MIT Press, pp 347-410.

De Kleer, Johan and Brian C. Williams (1987),

Diagnosing Multiple Faults, Artificial Intelligence,

Volume 32, Number 1, pp 97-130.

Geffner, Hector and Judea Pearl (1987), An Improved
Constraint-Propagation Algorithm for Diagnosis,

Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, San Mateo,
California: Morgan Kaufmann Publishers, Inc., pp
1105-1111.

Georgeff, Michael P. and Francois Felix Ingrand
(1989), Decision-Making in Embedded Reasoning

Systems, Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, San Mateo,

Califomia: Morgan Kaufmann Publishers, Inc., pp
972-978.

Holtzblatt, L. J., R. A. Marcotte and R.L. Piazza
(October 1989), Overcoming Limitations of Model-

based Diagnostic Reasoning Systems, presented at the

AIAA Computers in Aerospace VII Conference.

Hayes-Roth, Frederick, Donald A. Waterman and

Douglas B. Lenat, eds. (1983), Building Expert

Systems, Reading, Massachusetts: Addison-Wesley
Publishing Company Inc.

Kelly, Christine, Christopher Marsh, Alain Jouchoux

and Fred Lacy (1989), The Migration of an Expert
System from Lisp to Ada, Proceedings of AIDA-89:
Fifth Annual Conference on Artificial Intelligence and

Ada, Fairfax, Virginia: George Mason University, pp
108-119.

Marsh, Christopher (1988), The ISA Expert System:
A Prototype System for Failure Diagnosis on the Space

Station, Proceedings of the First International
Conference on Industrial Engineering Applications of

Artificial Intelligence and Expert Systems, New York,
New York: ACM Press, pp 60-74.

Marsh, Christopher and Christine Kelly (1989),

Operations Management Application Prototype,
Fourth Artificial Intelligence and Simulation
Workshop, Detroit, Michigan, pp 75-77.

Pressman, Roger S. (1987), Software Engineering: A
Practitioner's Approach, New York, New York:
McGraw-Hill.

353

c'" . .

NASA (February 1989), Information System Life
Cycle and Documentation Standards, Rel 4.3,
Washington D.C.: NASA Office of Safety, Reliability,
Maintainability, and Quality Assurance-Software
Management and Assurance Program.

Waterman, Donald A. (1986), A Guide to Expert
Systems, Reading, Massachusetts: Addison-Wesley
Publishing Company Inc.

Wilkins, David E. (1988), Practical Planning:
Extending the Classical AI Planning Paradigm, San
Mateo, California: Morgan Kaufmann Publishers, Inc.

354

